Dissipativity of delay functional differential equations with bounded lag
نویسندگان
چکیده
منابع مشابه
Nonlinear Delay-differential Equations with Small Lag
MANUEL PINTO Departamento de Matemiticas Facultad de Ciencias Universidad de Chile Casilla 653 Santiago, CHILE (Received October 4, 1994 and in revised form April 6,1995) ABSTRACT. Asymptotic formulae for the solutions of nonlinear functional differential system are obtained.
متن کاملThe exponential asymptotic stability of singularly perturbed delay differential equations with a bounded lag
This paper is concerned with the exponential stability of singularly perturbed delay differential equations with a bounded (state-independent) lag. A generalized Halanay inequality is derived in Section 2, and in Section 3 a sufficient condition will be provided to ensure that any solution of the singularly perturbed delay differential equations (DDEs) with a bounded lag is exponentially stable...
متن کاملPeriodicity in a System of Differential Equations with Finite Delay
The existence and uniqueness of a periodic solution of the system of differential equations d dt x(t) = A(t)x(t − ) are proved. In particular the Krasnoselskii’s fixed point theorem and the contraction mapping principle are used in the analysis. In addition, the notion of fundamental matrix solution coupled with Floquet theory is also employed.
متن کاملRandom fractional functional differential equations
In this paper, we prove the existence and uniqueness results to the random fractional functional differential equations under assumptions more general than the Lipschitz type condition. Moreover, the distance between exact solution and appropriate solution, and the existence extremal solution of the problem is also considered.
متن کاملBounded Nonoscillatory Solutions for First Order Neutral Delay Differential Equations
This paper deals with the first order neutral delay differential equation (x(t) + a(t)x(t− τ))′ + p(t)f(x(t− α)) +q(t)g(x(t − β)) = 0, t ≥ t0, Using the Banach fixed point theorem, we show the existence of a bounded nonoscillatory positive solution for the equation. Three nontrivial examples are given to illustrate our results. Mathematics Subject Classification: 34K4
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2009
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2009.02.024